
Math 4200
Monday October 26
3.2 Power series and Taylor series for analytic functions.  We begin with the last 
example from Friday, which we did not get to.

Announcements:   



Warm-up and summary/intro problem: 

f z =
n = 0

zn

n!
 = 1 z z2

2!
 ....

converges uniformly for z R , so converges to an analytic function  z.   Then use 
the term by term differentiation theorem to show that f z = f z  and use this and 
f 0 = 1 to identify f z .



Power series  

Consider the power series

f z =
n = 0

an z z0
n                  an, z0 .

Theorem 1:  
(i) There exists unique R 0,  such that the power series above converges 
absolutely  z with z z0 R  and diverges for all z with z z0 R .  This value of
R  is called the radius of convergence of the power series.  

(ii)  For r R , the convergence of the power series is uniform absolute convergence 
 z D z0, r .  Thus f  is analytic in D z0 ; R .  

proof:  Notice that the radius of convergence is uniquely determined by the two 

conditions it must satisfy.  Define  R sup r 0  
n = 0

an  rn  .  We'll show 

that this number R  satisfies the two required contitions so it will be the radius of 
convergence.  It is either a non-negative real number or :

Let r R and apply the Weirestrass M  test in D
_

z0, r  to deduce uniform absolute 
convergence of the power series for f z  in D z0, r .  Thus the power series converges
in D z0, R to an analytic function and we have shown (ii), and half of (i).



Then show the second part of (ii), i.e. divergence when z z0 R ,  by proving and 
using  

Abel's Lemma:  If supn  an  R1
n = M  then 

n = 0
an rn  0 r R1



Theorem 2   (differentiation and integration of power series)  Consider

f z =
n = 0

an z z0
n                  an, z0

with radius of convergence R 0.  Then f z  can be computed via term by term 
differentiation;  and the antiderivatives F z  of f z  can be computed by term by term 
antidifferentiation (plus an additive constant). The power series for f  and F  have the 
same radius of convergence R  as does the power series f .

f z = 
n = 1

n an z z0
n 1                     z D z0, R               

F z = F z0
n = 0

an
n 1  z z0

n 1        z D z0, R        

proof:   Since the power series for f z  converges in D z0, R , and uniformly 
absolutely for any closed subdisk (concentric or not, since each closed subdisk is 
contained in a closed concentric sub-disk), we deduce from Theorem B′ Friday that the 
term-by-term differentiated power series for f z  also converges  in D z0, R , and 
uniformly for any closed subdisk.  Thus the radius of convergence for the f z series is 
at least the radius of convergence for the f  series.  But using the characterization of 
radius of convergence from Theorem 1, the radius convergence for the series for f z  
is at most R , since the moduli of the terms in the f  series are larger than in the f  
series:

sup r 0  
n = 1

n an  rn sup r 0  
n = 0

an  rn = R .

Thus the radii of convergence for f, f  must be the same.  Thus also the radius of 
convergence for F, F = f  must be equal.

QED.



Theorem 3.  (Uniqueness of power series representations)  If f  is given by a power 
series 

f z =
n = 0

an z z0
n                  an, z0                  an, z0

with positive radius of convergence R  then the power series is the Taylor series with

an =
f n z0

n!      n = 0, 1, 2,...

In particular, a given analytic function whose domain of analyticity includes z0  can have
only one power series representation centered at z0 . 

proof:  We know from the previous Theorem that we have

f z = 
n = 1

n an z z0
n 1                     z D z0, R

and inductively, for k ,

f k z = 
n = k

n!
n k !  an z z0

n k       z D z0, R , k .

evaluating at z0  only the first term in the series is nonzero, so

f k z0 = k! ak     ak =
f k z0

k! .

Theorem 4  If f  is analytic in D z0; R1  then the Taylor series for f  at z0 ,

f z = 
n = 0

f n z0
n! z z0

n

converges to f  in D z0; R1 .   Thus the radius of convergence of the Taylor series is at 
least R1 .  And, one can use this to get an upper bound on the radius of convergence:  if 

 z1  such that f  cannot be extended to be analytic at z1 ,  then the radius of 
convergence of the Taylor series is at most z1 z0  , since a larger radius of 
convergence would imply that a possible domain of analyticity contains z1 . 

proof after examples....



Examples 

1)  Find the Taylor series for f z = e z2   at z0 = 0, and its radius of convergence.

2)  Find the Taylor series for f z = 1
z 1 2  at z0 = 0, along with its radius of 

convergence.

3)  Find the Taylor series for f z = log 1  z  at z0 = 0, along with its radius of 
convergence.



4)  Find the Taylor series of f z = 1
z2 z 6

= 1
5

1
z 3

1
z 2  at z0 = 0, 

along with its radius of convergence.  

5)   Define log z = ln z   i arg z  on the branch domain 0 arg z 2 .  Find 
the Taylor series for log z  at z0 = 1 i , and find the radius of convergence using the 
ratio test for absolute convergence.  Explain why your answer may seem surprising at 
first.



Theorem 4  If f  is analytic in D z0; R  then the Taylor series for f  at z0 ,

f z = 
n = 0

f n z0
n! z z0

n

converges to f  in D z0; R .   Thus the radius of convergence of the power series is at 
least R .  

proof:   Let z z0 r R1 R , t = z0 R1ei t, 0 t 2 , the circle 
z0 = R1  .

Then the Cauchy integral formula reads

f z = 1
2  i

 
f

z
 d .

We use geometric series magic:

f z = 1
2  i

 
f

z0 z z0
 d

= 1
2  i

 
f

z0

1

1
z z0

z0

 d

using the geometric series for 1
1 w  with w r

R1
:

= 1
2  i

 
f

z0
 
n = 0

z z0

z0

n
d

= 1
2  i

  
n = 0

f
z z0

n

z0
n 1 d .

Because f  is bounded on  and 
z z0

n

z0
n 1

1
R1

r
R1

n
,

the series which is the integrand converges uniformly on  so we may interchange the 
summation with the integration,  (and then pull each z z0

n  through the integral:

f z = 1
2  i n = 0

z z0
n   

n = 0

f
z0

n 1 d



=
n = 0

z z0
n   1

2  i
  

n = 0

f
z0

n 1 d

f z = 
n = 0

f n z0
n! z z0

n

by the Cauchy integral formula for derivatives!
Q.E.D.


